병렬, 직렬 및 혼합 배선의 전류 및 전압
실제 전기 회로는 대개 하나의 전선이 아니라 어떤 식으로든 서로 연결된 여러 전선을 포함합니다. 가장 간단한 형태로 전기 회로 "입력"과 "출력"만 있습니다. 즉, 전하(전류)가 회로로 흘러들어가 회로를 떠날 수 있는 다른 와이어에 연결하기 위한 두 개의 출력이 있습니다. 회로의 정상 전류에서 입력 및 출력 전류 값은 동일합니다.
여러 개의 서로 다른 전선을 포함하는 전기 회로를 보고 한 쌍의 지점(입력 및 출력)을 고려하면 원칙적으로 회로의 나머지 부분은 단일 저항으로 생각할 수 있습니다(등가 저항 측면에서). ).
이 접근 방식을 사용하면 전류 I가 회로의 전류이고 전압 U가 단자 전압, 즉 "입력" 지점과 "출력" 지점 사이의 전위차이면 비율 U / I는 전체적으로 등가 저항 R 회로의 값으로 간주할 수 있습니다.
만약에 옴의 법칙 를 만족하면 등가 저항을 아주 쉽게 계산할 수 있습니다.
전선을 직렬로 연결한 전류 및 전압
가장 간단한 경우 두 개 이상의 도체가 직렬 회로에 함께 연결되면 각 도체의 전류는 동일하고 "출력"과 "입력" 사이의 전압, 즉 단자에서 전체 회로는 회로를 구성하는 저항의 전압 합계와 같습니다. 그리고 옴의 법칙은 각 저항에 유효하므로 다음과 같이 작성할 수 있습니다.
따라서 다음 패턴은 전선의 직렬 연결의 특징입니다.
-
회로의 총 저항을 찾기 위해 회로를 구성하는 전선의 저항을 더합니다.
-
회로를 통과하는 전류는 회로를 구성하는 각 전선을 통과하는 전류와 같습니다.
-
회로 단자 양단의 전압은 회로를 구성하는 각 전선의 전압의 합과 같습니다.
전선을 병렬로 연결한 전류 및 전압
여러 전선이 서로 병렬로 연결될 때 그러한 회로의 단자에서의 전압은 회로를 구성하는 각 전선의 전압입니다.
모든 전선의 전압은 서로 같고 인가 전압(U)과 같습니다. "입력" 및 "출력"에서 전체 회로를 통과하는 전류는 병렬로 결합되어 이 회로를 구성하는 회로의 각 분기에 있는 전류의 합과 같습니다. I = U / R임을 알면 다음을 얻습니다.
따라서 다음 패턴은 전선 병렬 연결의 특징입니다.
-
회로의 전체 저항을 찾으려면 회로를 구성하는 전선 저항의 역수를 더하십시오.
-
회로를 통과하는 전류는 회로를 형성하는 각 전선을 통과하는 전류의 합과 같습니다.
-
회로 단자 양단의 전압은 회로를 구성하는 각 전선 양단의 전압과 같습니다.
단순 및 복합(결합) 회로의 등가 회로
대부분의 경우 결합된 와이어 연결을 나타내는 전기 다이어그램은 단계별 단순화에 적합합니다.
회로의 직렬 연결 및 병렬 부품 그룹은 위의 원칙에 따라 등가 저항으로 대체되며 조각의 등가 저항을 단계적으로 계산한 다음 전체 회로 저항의 하나의 등가 값으로 가져옵니다.
그리고 처음에 회로가 상당히 혼란스러워 보이면 단계적으로 단순화하여 직렬 및 병렬 연결된 와이어의 더 작은 회로로 나눌 수 있으므로 결국 크게 단순화됩니다.
한편, 모든 체계가 그렇게 간단한 방법으로 단순화될 수 있는 것은 아닙니다. 단순해 보이는 전선의 "브리지" 회로는 이러한 방식으로 조사할 수 없습니다. 여기에는 몇 가지 규칙이 적용되어야 합니다.
-
모든 저항에 대해 옴의 법칙이 충족됩니다.
-
각 노드에서, 즉 둘 이상의 전류가 수렴하는 지점에서 전류의 대수적 합은 0입니다. 노드로 흐르는 전류의 합은 노드에서 흐르는 전류의 합과 같습니다(Kirchhoff의 첫 번째 규칙);
-
«입력»에서 «출력»으로 각 경로를 우회할 때 회로 섹션의 전압 합계는 회로에 적용되는 전압과 같습니다(Kirchhoff의 두 번째 법칙).
브리지 와이어
위의 규칙을 사용하는 예를 고려하기 위해 브리지 회로에 결합된 와이어로 조립된 회로를 계산합니다. 계산이 너무 복잡하지 않도록 일부 와이어 저항이 서로 같다고 가정합니다.
"입력"에서 회로로 - 회로의 "출력"으로가는 도중에 전류 I, I1, I2, I3의 방향을 나타냅니다. 회로가 대칭임을 알 수 있으므로 동일한 저항을 통과하는 전류가 동일하므로 동일한 기호로 표시합니다. 실제로 회로의 «입력» 및 «출력»을 변경하면 회로가 원본과 구별할 수 없게 됩니다.
각 노드에 대해 노드로 흐르는 전류의 합이 노드에서 흐르는 전류의 합과 같다는 사실(전하 보존 법칙)에 따라 전류 방정식을 작성할 수 있습니다. 방정식:
다음 단계는 다양한 방식으로 입력에서 출력까지 회로를 돌면서 회로의 개별 섹션에 대한 전압 합계에 대한 방정식을 작성하는 것입니다. 이 예에서는 회로가 대칭이므로 두 방정식으로 충분합니다.
선형 방정식 시스템을 푸는 과정에서 회로에 적용된 특정 전압 U와 전선의 저항을 기준으로 "입력" 단자와 "출력" 단자 사이의 전류 I의 크기를 찾는 공식을 얻습니다. :
그리고 회로의 총 등가 저항에 대해 R = U / I라는 사실을 기반으로 공식은 다음과 같습니다.
예를 들어 저항 값의 제한 및 특수 사례를 유도하여 솔루션의 정확성을 확인할 수도 있습니다.
이제 옴의 법칙과 Kirchhoff의 법칙을 적용하여 병렬, 직렬, 혼합 및 연결 전선에 대한 전류와 전압을 찾는 방법을 알았습니다. 이러한 원리는 매우 간단하며 가장 복잡한 전기 회로도 몇 가지 간단한 수학 연산을 통해 궁극적으로 기본적인 형태로 축소됩니다.